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The Ptolemy project studies modeling, simulation, and design of concurrent, real-time, embedded 
systems. The focus is on assembly of concurrent components. The key underlying principle in the 
project is the use of well-defined models of computation that govern the interaction between 
components. The software system Ptolemy II has been in public release for about nine months now, 
and includes a number of implementations of different models of computation. In this presentation, 
we outline some new research directions in this project, aimed at enhancing the level of productivity 
and verifiability of real-time and embedded systems. 
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In this white paper, we briefly summarize the current state of the Ptolemy II software system [1], 
and outline some current research directions that we feel may be of interest to this community. 
One of the goals of Ptolemy II is to provide a theoretical and practical framework for defining 
and producing embedded software. Executable models are constructed under a model of 
computation, which can be thought of as the “laws of physics” that govern the interaction of 
components in the model. The choice of model of computation depends strongly on the type of 
model being constructed. Models of computation that have been implemented in the Ptolemy 
group include synchronous dataflow, finite state machine, continuous time, and synchronous-
reactive models of computation. Other research groups at UCB have used Ptolemy II as a 
platform for research into other models of computation [4, 5]. 
 
One principle of the Ptolemy project is that the choice of models of computation strongly affects 
the quality of a system design. For example, in embedded systems, useful models of computation 
typically include the notions of concurrency and time. Embedded systems by their nature contain 
concurrent components and respond to external events. Choosing an inappropriate model of 
computation may lead the designer into a more costly or less reliable implementation. 
 
A second key principle is the use of multiple models of computation constructed in a hierarchy of 
models. We believe that no single general-purpose model of computation is likely to deliver what 
designers need to model a complex embedded system. Modeling the diverse implementation 
technologies and their interactions is not reasonable within a homogeneous environment. Ptolemy 
II therefore supports the construction and interoperability of executable models that are built 
under a wide variety of models of computation. 
 
Following sections describe some new areas of research that we are investigating within the 
Ptolemy II framework. 
 

Interface theories 
We are just beginning to explore Alfaro and Henzinger’s interface theories [6] in the context of 
Ptolemy. Although Ptolemy is an excellent research and execution platform for embedded 
systems components, it does not directly support more abstract system specification. In particular, 
it does not support refinement of interfaces into sub-interfaces and components. 
 
An interface theory consists of an interface algebra A, a component algebra B, and an 
implementation ◄ of A by B. Thus, B implements A, or B ◄ A. The interface algebra supports 
the key operations of composition, connection, and refinement, while the component algebra 
supports compositional implementation. Refinement of interfaces is contra-variant on inputs and 
outputs (for example, in the I/O interface algebra, a refinement of the interface can have fewer 
input ports and more output ports). Refinement of components, in contrast, is co-variant. 
 
Examples of interface algebras include I/O interfaces, assume/guarantee interfaces, and port 
dependency interfaces. Although Ptolemy does have an implicit I/O interface algebra (its type-
inference engine), it does not explicitly support the notion of different interface theories. 
 
We are exploring the possibility of providing direct support for interface theories in Ptolemy. In 
one scenario, interface theories are akin to a model of computation in Ptolemy. That is, it may be 
possible for an implementer to provide a new interface theory, if the application domain and/or 
theoretical model require it. The process of system design would then include successive 



refinement of the model within the interface algebra, and eventual execution of components in the 
appropriate component algebra – that is, within a suitable model of computation. 
 

Modal and higher-order models 
Ptolemy II is currently a first-order language. In addition, most models produced in Ptolemy have 
static structure – that is, the model does not change structure during execution. Ptolemy does have 
the ability to mutate models during execution, but this facility is somewhat ad-hoc and outside the 
bounds of the formal theories on which much of Ptolemy is based [7]. We are interested in 
pushing the boundaries of expressivity in Ptolemy with modal and higher-order models, together 
with appropriate formalisms that describe this type of operation. 
 

 
 

Figure 1. A modal model (from Eker and Lee). Each state in the upper model represents a different 
connection of components in the lower model 

 
In a modal model, a model such as a dataflow or continuous time model is embedded within a 
model of a “control” nature, such as a state machine or synchronous-reactive model. Ptolemy 
currently supports embedding of models of diverse MoCs, but each state of the state machine (for 
example) represents a different model internally. In a modal model, each state of the machine 
represents a different set of connections of a single dataflow (for example) model. Thus, the 
construction is not strictly hierarchical, as state persists in the lower level model as the upper 
level model proceeds through its state space (Figure 1). 
 
In Ptolemy Classic (the first version of Ptolemy), a higher-order function was a component that 
took the name of another component as a parameter, and replicated that component together with 
an appropriate communication network. This was based on earlier work that drew parallels 
between dataflow and functional programming systems [3]. Figure 2 illustrates a Ptolemy II 
model that would benefit from a feature like this, and which could be expressed with two higher-
order functions. This model is being developed by Steve Neuendorffer for Joszef Ludwig (of 
Lawrence Berkeley Labs), for analyzing signals from neutrino detection arrays suspended in the 
Antarctic sea. A more realistic model would have 64 x 64 arrays of detectors. 
 



 
 

Figure 2. A model that needs higher-order functions. This system could be represented as two higher-order 
actors, parameterized by xmitModel and NetworkMerge actors 

 
We are exploring re-introducing a facility like this in Ptolemy II, together with compilation 
technology to make execution of large expansions feasible. We would, however, like it to be part 
of a more general theoretical framework, in which the “higher-order-ness” does not necessarily 
require static knowledge of parameters such as (in this example) the number of detectors in an 
array. This theoretical framework will take account of the varying behavior of such higher-order 
constructs in the presence of interface theories and different models of computation. 
 
A more general form of higher-order behavior is exemplified by work done by Esser and Janneck 
for design space exploration [2]. (Although this work was done in the context of the Moses 
system, Janneck is currently a post-doctoral researcher in the Ptolemy group.) In this context, a 
model can be a first-class object. To perform design-space exploration, the designer constructs 
two models: one to represent the search strategy, and one to represent the model being optimized. 
The latter system is passed around the former system as a token, and parameters are fed into and 
retrieved from this “model under test” to assist the “explorer” model in its task (Figure 3). 

Conclusion 
We have outlined some research directions under way in the Ptolemy project. As always, we 
strive for a pragmatic blend of formalism and implementation. If successful, these research 
fundamentals could become a simple architecture that serves as the basis for a distributed 
experimental platform for further research into component-based design for embedded systems. 
This would be done in the context of the NEPHEST project. 
 



 
 

Figure 3. A design-space explorer model (implemented in Moses). The double-lined place accepts and 
interconnects a model token. 
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